
ПРИКАСПИЙСКИЙ ЖУРНАЛ: управление и высокие технологии № 3 (35) 2016 
 

 

21 

26. Saurbaeva R. A., Yesaydar U. S. Primenenie zarubezhnykh sistem bronirovaniya i ispolzovanie tekhnologiy  
v gostinichnom biznese [Application of foreign booking systems and use of technologies in hotel business]. Vestnik Almatin-
skogo tekhnologicheskogo universiteta [The Bulletin of the Almaty Technological University], 2013, no. 4, pp. 86–89. 

27. Skobkin S. S. Industriya gostepriimstva ili turizma? Kto prav? [Industry of hospitality or tourism? Who is 
right?]. Rossiyskoe predprinimatelstvo [Russian Business], 2012, no. 21, pp. 130–135. 

28. Startseva O. M. Razvitie sportivnogo turizma v Astrakhanskoy oblasti [Development of sporting tourism in the 
Astrakhan region]. Ekologiya Rossii: na puti k innovatsiyam [Ecology of Russia: on the way to innovations]. 2015. № 11. S. 
147-150. 

29. Trubitsina L.F., Zanozin V.V. Prirodno-rekreatsionnye resursy Limanskogo rayona Astrakhanskoy oblasti i per-
spektivy ikh ispolzovaniya dlya razvitiya turizma [Natural and recreational resources of the Limansky district of the Astra-
khan region and perspective of their use for tourism development]. Ekologiya Rossii: na puti k innovatsiyam [Ecology of 
Russia: on the Way to Innovations], 2013, no. 7, pp. 27–30. 

30. Tyger L. M., Goryacheva Ye. D., Sultaeva N. L., Kostikova N. V., Rudina L. M. Sovremennye trebovaniya  
k personalu v sisteme upravleniya chelovecheskimi resursami v industrii gostepriimstva [The modern requirements to staff in 
human resources management system in the hospitality industry]. Naukovedenie [Science of Science], 2016, vol. 8, no. 2, pp. 80. 

31. Shtankova I. S., Bezuglova M. S. Problemy i perspektivy razvitiya rechnogo kruiznogo turizma v Astrakhan-
skoy oblasti [Problems and perspectives of river cruise tourism development in the Astrakhan region]. Astrakhanskiy vestnik 
ekologicheskogo obrazovaniya [The Astrakhan Bulletin of Ecological Education], 2014, no. 1 (27), pp. 215–217. 
 
 
УДК 004.5, 004.93, 612.776 
 

USING EMG PATTERNS FOR HUMAN GAIT CYCLE RECOGNITION1 
 

The article has been received by editorial board 02.07.2016, in the final version – 28.07.2016. 
 

Bobe Anatoly S., Engineer, Neurobotics Ltd., 4922 passage, 2/4 Yuzhnaya promzona, Moscow, Ze-
lenograd, 124498, Russian Federation, e-mail: a.bobe@neurobotics.ru 

Konyshev Dmitry V., post-graduate student, Bauman Moscow State Technical University, 5/1 Bauman-
skaya 2nd St., Moscow, 105005, Russian Federation, e-mail: konyshev-dmitri@yandex.ru 

Vorotnikov Sergey A., C.Sc. (Egineering), Associate professor, Bauman Moscow State Technical Uni-
versity, 5/1 Baumanskaya 2nd St., Moscow, 105005, Russian Federation, e-mail: s_vorotnikov@mail.ru 

 
The article describes the system for human gait cycle recognition based on EMG signal processing. The analysis  

of electrical signals produced by lower limb muscles during gait is carried out. The correlation between EMG signal charac-
teristics and actual leg movements during gait are researched. The method of signal preprocessing and adaptive segmentation 
for detection of muscle activation patterns is developed. The most informative muscles for analysis are selected basing on 
signal to noise ratio. The pattern sequences processing method for gait cycle coding is proposed. The algorithm is imple-
mented in C# and has shown about 90 % recognition rate during testing. The system can be used for exoskeleton control  
as well as in functional diagnostics and sports medicine applications. 
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В статье описана система распознавания цикла ходьбы человека на основе обработки сигналов ЭМГ. Про-

ведён анализ особенностей электрических сигналов от различных мышц нижних конечностей в процессе ходьбы. 
Изучены взаимосвязи характеристик ЭМГ сигнала с реальными фазами движения ног в процессе совершения шага. 
Разработан метод предобработки и адаптивной бинаризации ЭМГ сигнала для выделения паттернов активации 
мышц. Выбраны наиболее информативные для анализа мышцы на основе соотношения сигнал-шум. Предложен 
метод обработки последовательности паттернов для кодирования элементов цикла ходьбы. Реализован алгоритм 
распознавания фаз ходьбы на языке C#, при тестировании достигнут 90 % уровень верного распознавания элементов 
цикла ходьбы. Система предназначена для использования при управлении экзоскелетом, но может быть также ис-
пользована в системах функциональной диагностики и спортивной медицине. 

Ключевые слова: электромиография, обработкабиосигналов, распознавание паттернов, мышцы нижних 
конечностей, ходьба, фильтрация сигналов, функциональная диагностика, анализ движения, электрофизиология 
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The development of the systems, based on the biofeedback control, has been a subject of interest  

of many researchers during the last several years. In particular, significant progress has been made in elec-
tromiogram (EMG) signals recognition for such applications as the limb prostheses operation, functional diag-
nostics and sports medicine. Most of the recognition systems utilize machine learning approach (neural networks 
[8], Support Vector Machines [5]) to recognize the certain movements and simple gestures of a limb. This ap-
proach has been widely used and proved its efficiency, but it is actually not suitable for recognizing such com-
plex, extended in time and subject-specific movements as strides during human walking. We have found no evi-
dence that EMG informationfrom lower limbs has ever been successfully used for movement recognition and/or 
biofeedback control, such as exoskeleton [3, 6, 12]. At the same time, these applications have been implemented 
for the upper limb movement. 

The aim of this work was to develop a robust and efficient algorithm for human stridemovement recog-
nition. Another issue was to minimize the time delay of the recognition system, so that it could be able to operate 
as close to real-time regime as possible.  

General characteristic of article theme. Constraint for time delay of the recognition system is essen-
tial for any biofeedback control applications. Assuch type of movement as stride is rather extended in time; there 
is no possibility to learn the whole history of the corresponding EMG signal in advance before processing. That's 
why we abandoned the idea to use machine learning methods to solve the problem and concentrated on empirical 
pattern recognition approach.Our method for resolve the problem can be summarized as follows. 

 Filtered signals from each of the considered muscles are thresholdedinto activation and deactivation phases. 
 A stride movement is described by activation pattern [5], consisting of several stages, which corre-

spond to different combinations of activated and deactivated muscles. 
 Threshold values for each muscle activation, as well as generally stable stages and the order of their 

occurrence for the strides, are adaptively calculated for each subject during training phase. 
 During testing phase the system recognizes a stride as a set of activation patterns, occurring in the 

defined order. 
This approach can be used for the muscle activity research for different types of movement, as well as 

for training a classifier for automatic recognition of these movements or their sequences, such as in [2, 10].  
EMG signal processing tools. All our experiments were carried out using the Kardi3/9 wireless  

9-channel amplifier with sampling rate of 1000 Hz. A subject performed series of 5 to 9 separate strides with  
a pause of 2–3 seconds between them. The obtained signals were passed through bandpass filter with low and 
high frequencies of 30 and 200 Hz respectively. Then the signal root mean square (RMS) was calculated. For 
gait analysis we do not need the high frequency information. So we applied a lowpass Butterworth filter with 
cutoff of just 1 Hz to the resulting signal. This way smooth curves, characterizing the general muscle activation 
in scope of several seconds, were achieved (Fig. 1). 
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At the first stage of our experiments the goal was to find the most informative (in the relation to the sig-
nals recognition) muscles. A wide number of muscles are involved in gait movements, but very few of them ac-
tually provide stable and reliable signals for stride phases recognition. Some of the measured signals are pre-
sented on Fig. 2. It is obvious, that although different muscles produce different activation intensities and pattern 
forms during strides, the actual activation of each muscle almost always happens at the very beginning of the 
stride and deactivation happens at its end.Exception are the muscles, which have non-zero base level – as they 
are activated during standing, such as Gluteus Medius. Under «activation» we mean the level of signalб which 
significantly distincts from noise for this muscle (over 3σ deviation).  

 

 
 

Figure 1 – Muscle activation signal sample 
 

We have chosen Soleus and Tibialis Anterior muscles as the most informative for our task [4, 9]. The pat-
terns generated by these muscles have proved to be rather stable during all our experiments. The former provides 
a single-peak activation pattern during the leg pushing off the ground.The latter remains active during the whole 
leg movement providingone local minimum around the push off stage and,for certain subjects,another one before 
the start of the support stage (when a leg is approaching the ground). The correspondence between the actual 
stride stages and the muscle patterns, which is shown on Fig. 3, was determined using accelerometer, attached to 
one of the legs.As we passed to recognition in our later experiments we utilizedonly the signals from these two 
muscles, from both legs. 

In our experiments average voltage during activation was around 40µVfor Tibialis Anterior and 100µV 
for Soleus. With average fluctuations during rest state under 7 µV and 20 µV, both muscles provided signal  
to noise ratio of about 5, which is sufficient for the task. 

As presented on the figures above, in ideal case it is possible to precisely extract the time periods of six 
stages of a stride. In practice, however, signals may contain some other local peaks or artifacts which make it 
difficult to judge about the gait cycle utilizing the signal form. A much more consistent, though more rough ap-
proach, is to apply adaptive signal thresholding and extract the binary activation patterns of each muscle as de-
scribed below. 

Signal Thresholding Method. In this paper we propose a novel algorithm for signal thresholding, 
which was designed to automatically distinguishthe signal features observed in our experiments. 

The general aim of signal thresholding in our system is to localize the most significant and stable EMG 
signal phases. At the same time these signals are subject-specific as the walking movements are generally not the 
same for different persons [7]. Thus the threshold values for the muscles are calculated given a training sample, 
consisting of several strides made by subject.  

The criteria for the threshold value is the following: the number of activations/deactivations should be 
the same for each step and should be stable enough to variations of a threshold value.  
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Figure 3 – Correspondence between the stride stages and the muscle activation 
 

Given a signal s(t) within a period of time Tand number of steps in a sample n a threshold value xt cor-
responds to a maximum value of f(x, Δx) at x = xt: 
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where Δx is a window size. The Δx value is chosen with respect to the desired stability of a threshold chosen. 
In other words, if we display the number of crossings of a signal and a threshold level line as a function 

of threshold value g(x), the optimal value would correspond to a middle of the longest plateau of this function 
(Fig. 4). Such approach is not of much use in terms of muscle activity detection, but gives a good representation 
of some basic patterns of a particular movement.  

During our experiments threshold levels were calculated independently for each muscle, using a sample 
signal containing from 7 to 10 strides, made by test subject. 

Signal segmentation. After signal thresholding a set of activation patterns are obtained for each step  
as shown on Figure 5. We can introduce a stage as a particular combination of activated and deactivated mus-
cles. A stage can be therefore presented in a form of a binary code. Note that the same stage may occur several 
times during single movement. 

We have developed an algorithm, which performs automatic stage extraction from a set of activation 
patterns.This algorithm learning the order of patterns occurrence, their duration and their repetitiveness from 
stride to stride. A stage is excluded from consideration in following cases. 

 If its average duration is below a specified limit (we set it as a 3% of average overall stride duration). 
 If its position in stride patternsis inconsistent. 
 If it is not detectable inmore than 20 % strides within the training signal. 
The stages extracted during training phase are associated with particular physical movements of the 

legs, according to the scheme, presented on Figure 3. Depending on the test subjects from 4 to 6 consistent 
stages were usually detected, successfully covering the major leg movements.  

As for the test mode, our system was configured to detect the stride movement as a set of stages in prede-
fined order. During the neutral position (0000) the first stage is awaited. When its occurrence is detected, the second 
stage is awaited and so on. If a wrong stage occurs at some point of the stride the system ignores it. If a neutral 
stage signal 0000 occurs, the system always resets to the neutral position (an interrupted stride is declared). 



CASPIAN JOURNAL: Control and High Technologies, 2016, 3 (35)  
 

 

26 

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4

x 1
04

0

10
0

30
0

20
0

40
0

50
0 5415
8 0

54
10

0
15

8
20

0
25

0
30

0
35

0
40

0
45

0
50

0
03045 1836

g(
x)

s(t
)

t

x

  
Fi

gu
re

 4
 –

 S
ig

na
l t

hr
es

ho
ld

in
g 

(T
ib

ia
lis

 A
nt

er
io

r)
. A

 s
am

pl
e 

si
gn

al
 c

on
ta

in
in

g 
9 

st
ep

s 
ca

n 
be

 th
re

sh
ol

de
d 

to
 d

et
ec

t e
ith

er
 1

 a
ct

iv
at

io
n/

de
ac

tiv
at

io
n 

pe
r s

tri
de

 (1
8 

cr
os

si
ng

s 
ov

er
al

l) 
or

 2
 

(3
6 

cr
os

si
ng

s)
. T

he
 se

co
nd

 v
ar

ia
nt

 g
iv

es
 m

or
e 

ph
as

es
 fo

r e
ac

h 
st

rid
e 

bu
t i

s l
es

s s
ta

bl
e 

 



ПРИКАСПИЙСКИЙ ЖУРНАЛ: управление и высокие технологии № 3 (35) 2016 
 

 

27 

 
 

Figure 5 – Activation Patterns from two pairs of muscles (R-right; L-left; S-Soleus; Ta-Tibialis Anterior).  
A set of 5 consistent stages can be extracted judging on these 3 strides. Our algorithm will discard a 0111 stage 
between 2 and 3 as it is too short, as well as the final 0100 stage as it is almost not detectable within the 3rd stride 

 
We tested our system on 5 subjects, each performing from 7 to 10 strides for training and about 50 strides 

for testing. During the experiments we achieved the recognition rate about 90 %. Actually the beginning of the 
movement was correctly detected for 98 % of the strides.The rest of errors were due to false interruption or mis-
detection of one of the stages.The system time delay did not exceed 0,3 seconds, which we consider satisfactory 
for our task (it is small in comparison with the durationof theentire stride movement).  

Conclusion. We have developed a system for single stride recognition, based on analysis of a filtered 
EMG signal of lower limb muscles. We have localized the most informative muscles and determined the relation 
between their EMG signal and corresponding actual leg movements during stride. Alsoauthors have developed an 
algorithm for adaptive signal thresholding – to generate the pattern of muscle activation/deactivation. The patterns, 
obtained during training, were automatically analyzed to determine their most consistent stages – the combinations 
of activated/deactivated muscles. A complex movement was interpreted as an ordered set of stages. This approach 
allowed us to efficiently recognize with relatively small time delay such a long and complex movement as a stride. 
The configuration, described in this paper, was used for the stride detection.However the system can also be trained 
and configured for any other complex movement recognition, using a desired number of EMG channels, without 
any major changes. This makes our approach general and flexible for different tasks. 

We consider our system as a promising step in the field of biofeedback-based control system develop-
ment. It could also be useful in medical applications such as functional diagnostics and rehabilitation. 

In our future work we plan to use more EMG channels for obtaining more robust and accurate detection 
of different stride stages. Another issue is to develop a system, which could rapidly adapt for recognition of any 
complex movement of lower or upper limb by automatically choosing the most informative EMG channels and 
produce the general «map» of the particular movement and the muscles, involved in it.  
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