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The article describes the system for human gait cycle recognition based on EMG signal processing. The analysis
of electrical signals produced by lower limb muscles during gait is carried out. The correlation between EMG signal charac-
teristics and actual leg movements during gait are researched. The method of signal preprocessing and adaptive segmentation
for detection of muscle activation patterns is developed. The most informative muscles for analysis are selected basing on
signal to noise ratio. The pattern sequences processing method for gait cycle coding is proposed. The algorithm is imple-
mented in C# and has shown about 90 % recognition rate during testing. The system can be used for exoskeleton control
as well as in functional diagnostics and sports medicine applications.
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B crarbe onmcana cucremMa pacrio3HaBaHHS UKJIA XOABOBI YelloBeKa Ha ocHOBe 00paboTku curaanoB DMI. Ilpo-
BeZ€H aHAJM3 OCOOCHHOCTEH 3JIEKTPUUECKUX CHI'HAIOB OT PA3IMYHBIX MBI HIKHUX KOHEYHOCTEH B IPOIECCE XOIbOBI.
W3ydeHsl B3auMocBs31 xapakrepuctuk OMI curHana ¢ peanbHbBIMU (ha3aMy ABM)KEHHUS] HOT B IIPOLIECCE COBEPIICHUS IIara.
Pa3paboran meron npenoOpaboOTkM M amanTuBHOW OwHapm3amuu OMIT curHama Juisi BbIJENEHHs NATTEPHOB aKTHUBAIMU
™Mb BeiOpansl HanOonee nH(poOpMaTHBHBIE UIsl aHAJIKM3a MBIIIIEI HA OCHOBE COOTHOIICHUS CHTHAI-IIYM. lIpemioxkeH
MeToJl 00pabOTKH IOCIIEeIOBATEIBHOCTH MMATTEPHOB ISl KOJUPOBAHWS AIIEMEHTOB IMKJIAa XOIbOBI. Peann3oBaH anroputm
pacniozHaBaHus (a3 xoxs0bI Ha si361ke CH#, pH TecTHpoBaHUK TOCTUTHYT 90 % ypOBEHB BEPHOI'O paclO3HaBaHMS SJIEMEHTOB
mukiIa xone0e1. CrcTeMa npeiHa3HaueHa JUIsl UCHOJIB30BAHMUS IPH YIIPABICHUH AK30CKEIETOM, HO MOXET OBITh TaKKe HC-
TI0JIE30BaHa B CUCTEMaX (DYHKIMOHAIBEHOH JUArHOCTUKH ¥ CIIOPTHBHOH METHIIVHE.

KioueBblie cioBa: snexrpomuorpadus, o0padboTkaOHMOCUTHATIOB, PACIIO3HABAHUE HMATTEPHOB, MBIIIIBI HIDKHHX
KOHEYHOCTeH, X0p0a, pribTpanus CHrHaIoB, (pyHKIMOHAIBHAS IUArHOCTUKA, aHAIN3 IBIDKEHHS, SJIEKTPOPH3NOIOTHsT

Anpec Bugeoponka (Address of the video)
http://hi-tech.asu.edu.ru/docs/addmaterials/2016-3-1(Gait).mp4

The development of the systems, based on the biofeedback control, has been a subject of interest
of many researchers during the last several years. In particular, significant progress has been made in elec-
tromiogram (EMG) signals recognition for such applications as the limb prostheses operation, functional diag-
nostics and sports medicine. Most of the recognition systems utilize machine learning approach (neural networks
[8], Support Vector Machines [5]) to recognize the certain movements and simple gestures of a limb. This ap-
proach has been widely used and proved its efficiency, but it is actually not suitable for recognizing such com-
plex, extended in time and subject-specific movements as strides during human walking. We have found no evi-
dence that EMG informationfrom lower limbs has ever been successfully used for movement recognition and/or
biofeedback control, such as exoskeleton [3, 6, 12]. At the same time, these applications have been implemented
for the upper limb movement.

The aim of this work was to develop a robust and efficient algorithm for human stridemovement recog-
nition. Another issue was to minimize the time delay of the recognition system, so that it could be able to operate
as close to real-time regime as possible.

General characteristic of article theme. Constraint for time delay of the recognition system is essen-
tial for any biofeedback control applications. Assuch type of movement as stride is rather extended in time; there
is no possibility to learn the whole history of the corresponding EMG signal in advance before processing. That's
why we abandoned the idea to use machine learning methods to solve the problem and concentrated on empirical
pattern recognition approach.Our method for resolve the problem can be summarized as follows.

o Filtered signals from each of the considered muscles are thresholdedinto activation and deactivation phases.

o A stride movement is described by activation pattern [5], consisting of several stages, which corre-
spond to different combinations of activated and deactivated muscles.

e Threshold values for each muscle activation, as well as generally stable stages and the order of their
occurrence for the strides, are adaptively calculated for each subject during training phase.

e During testing phase the system recognizes a stride as a set of activation patterns, occurring in the
defined order.

This approach can be used for the muscle activity research for different types of movement, as well as
for training a classifier for automatic recognition of these movements or their sequences, such as in [2, 10].

EMG signal processing tools. All our experiments were carried out using the Kardi3/9 wireless
9-channel amplifier with sampling rate of 1000 Hz. A subject performed series of 5 to 9 separate strides with
a pause of 2—3 seconds between them. The obtained signals were passed through bandpass filter with low and
high frequencies of 30 and 200 Hz respectively. Then the signal root mean square (RMS) was calculated. For
gait analysis we do not need the high frequency information. So we applied a lowpass Butterworth filter with
cutoff of just 1 Hz to the resulting signal. This way smooth curves, characterizing the general muscle activation
in scope of several seconds, were achieved (Fig. 1).
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At the first stage of our experiments the goal was to find the most informative (in the relation to the sig-
nals recognition) muscles. A wide number of muscles are involved in gait movements, but very few of them ac-
tually provide stable and reliable signals for stride phases recognition. Some of the measured signals are pre-
sented on Fig. 2. It is obvious, that although different muscles produce different activation intensities and pattern
forms during strides, the actual activation of each muscle almost always happens at the very beginning of the
stride and deactivation happens at its end.Exception are the muscles, which have non-zero base level — as they
are activated during standing, such as Gluteus Medius. Under «activation» we mean the level of signalo which
significantly distincts from noise for this muscle (over 3c deviation).

Signal (absolute value)

P e AN b dul ||U,J.;A|..1;.J||....“m.mm.ulmlml.‘ il ;..l.mmuiull. u.um.lhut,.m.m, ol i TIRTRUEAY LL.‘..AJI..J‘..MJIIALJI..A.LL
0 5000 time, ms 10000 15000

Signal after 1 Hz filtering

0 5000 10000 15000

time, ms
Figure 1 — Muscle activation signal sample

We have chosen Soleus and Tibialis Anterior muscles as the most informative for our task [4, 9]. The pat-
terns generated by these muscles have proved to be rather stable during all our experiments. The former provides
a single-peak activation pattern during the leg pushing off the ground.The latter remains active during the whole
leg movement providingone local minimum around the push off stage and,for certain subjects,another one before
the start of the support stage (when a leg is approaching the ground). The correspondence between the actual
stride stages and the muscle patterns, which is shown on Fig. 3, was determined using accelerometer, attached to
one of the legs.As we passed to recognition in our later experiments we utilizedonly the signals from these two
muscles, from both legs.

In our experiments average voltage during activation was around 40uVfor Tibialis Anterior and 100V
for Soleus. With average fluctuations during rest state under 7 pV and 20 pV, both muscles provided signal
to noise ratio of about 5, which is sufficient for the task.

As presented on the figures above, in ideal case it is possible to precisely extract the time periods of six
stages of a stride. In practice, however, signals may contain some other local peaks or artifacts which make it
difficult to judge about the gait cycle utilizing the signal form. A much more consistent, though more rough ap-
proach, is to apply adaptive signal thresholding and extract the binary activation patterns of each muscle as de-
scribed below.

Signal Thresholding Method. In this paper we propose a novel algorithm for signal thresholding,
which was designed to automatically distinguishthe signal features observed in our experiments.

The general aim of signal thresholding in our system is to localize the most significant and stable EMG
signal phases. At the same time these signals are subject-specific as the walking movements are generally not the
same for different persons [7]. Thus the threshold values for the muscles are calculated given a training sample,
consisting of several strides made by subject.

The criteria for the threshold value is the following: the number of activations/deactivations should be
the same for each step and should be stable enough to variations of a threshold value.
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Figure 3 — Correspondence between the stride stages and the muscle activation

Given a signal s(¢) within a period of time 7and number of steps in a sample # a threshold value x, cor-
responds to a maximum value of f(x, Ax) at x = x;
x+Ax

S(x.Ax) = [R(x)g(x) dx — max,

x—Ax

2(x) = f d(szgn(s(t) x))| "

1,1f g(x):k*n, k=24
R(x)= . ;
0 otherwise
where Ax is a window size. The Ax value is chosen with respect to the desired stability of a threshold chosen.

In other words, if we display the number of crossings of a signal and a threshold level line as a function
of threshold value g(x), the optimal value would correspond to a middle of the longest plateau of this function
(Fig. 4). Such approach is not of much use in terms of muscle activity detection, but gives a good representation
of some basic patterns of a particular movement.

During our experiments threshold levels were calculated independently for each muscle, using a sample
signal containing from 7 to 10 strides, made by test subject.

Signal segmentation. After signal thresholding a set of activation patterns are obtained for each step
as shown on Figure 5. We can introduce a stage as a particular combination of activated and deactivated mus-
cles. A stage can be therefore presented in a form of a binary code. Note that the same stage may occur several
times during single movement.

We have developed an algorithm, which performs automatic stage extraction from a set of activation
patterns. This algorithm learning the order of patterns occurrence, their duration and their repetitiveness from
stride to stride. A stage is excluded from consideration in following cases.

o Ifits average duration is below a specified limit (we set it as a 3% of average overall stride duration).

o Ifits position in stride patternsis inconsistent.

o Ifit is not detectable inmore than 20 % strides within the training signal.

The stages extracted during training phase are associated with particular physical movements of the
legs, according to the scheme, presented on Figure 3. Depending on the test subjects from 4 to 6 consistent
stages were usually detected, successfully covering the major leg movements.

As for the test mode, our system was configured to detect the stride movement as a set of stages in prede-
fined order. During the neutral position (0000) the first stage is awaited. When its occurrence is detected, the second
stage is awaited and so on. If a wrong stage occurs at some point of the stride the system ignores it. If a neutral
stage signal 0000 occurs, the system always resets to the neutral position (an interrupted stride is declared).
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Figure 5 — Activation Patterns from two pairs of muscles (R-right; L-left; S-Soleus; Ta-Tibialis Anterior).
A set of 5 consistent stages can be extracted judging on these 3 strides. Our algorithm will discard a 0111 stage
between 2 and 3 as it is too short, as well as the final 0700 stage as it is almost not detectable within the 3rd stride

We tested our system on 5 subjects, each performing from 7 to 10 strides for training and about 50 strides
for testing. During the experiments we achieved the recognition rate about 90 %. Actually the beginning of the
movement was correctly detected for 98 % of the strides.The rest of errors were due to false interruption or mis-
detection of one of the stages.The system time delay did not exceed 0,3 seconds, which we consider satisfactory
for our task (it is small in comparison with the durationof theentire stride movement).

Conclusion. We have developed a system for single stride recognition, based on analysis of a filtered
EMG signal of lower limb muscles. We have localized the most informative muscles and determined the relation
between their EMG signal and corresponding actual leg movements during stride. Alsoauthors have developed an
algorithm for adaptive signal thresholding — to generate the pattern of muscle activation/deactivation. The patterns,
obtained during training, were automatically analyzed to determine their most consistent stages — the combinations
of activated/deactivated muscles. A complex movement was interpreted as an ordered set of stages. This approach
allowed us to efficiently recognize with relatively small time delay such a long and complex movement as a stride.
The configuration, described in this paper, was used for the stride detection.However the system can also be trained
and configured for any other complex movement recognition, using a desired number of EMG channels, without
any major changes. This makes our approach general and flexible for different tasks.

We consider our system as a promising step in the field of biofeedback-based control system develop-
ment. It could also be useful in medical applications such as functional diagnostics and rehabilitation.

In our future work we plan to use more EMG channels for obtaining more robust and accurate detection
of different stride stages. Another issue is to develop a system, which could rapidly adapt for recognition of any
complex movement of lower or upper limb by automatically choosing the most informative EMG channels and
produce the general «map» of the particular movement and the muscles, involved in it.
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